
4
Understanding Data Warehousing

Data warehouse is the core of business intelligence. It is majorly used for reporting and analyzing
data. Data mart, master data management, dimension, slowly changing dimension and star sche-
ma. This text elucidates the crucial theories and principles of data warehousing.

Data Warehouse

In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse
(EDW), is a system used for reporting and data analysis, and is considered a core component of
business intelligence. DWs are central repositories of integrated data from one or more disparate
sources. They store current and historical data and are used for creating analytical reports for
knowledge workers throughout the enterprise. Examples of reports could range from annual and
quarterly comparisons and trends to detailed daily sales analysis.

Data Warehouse Overview

The data stored in the warehouse is uploaded from the operational systems (such as marketing or
sales). The data may pass through an operational data store for additional operations before it is
used in the DW for reporting.

Types of Systems

Data Mart

A data mart is a simple form of a data warehouse that is focused on a single subject (or
functional area), hence they draw data from a limited number of sources such as sales,
finance or marketing. Data marts are often built and controlled by a single department
within an organization. The sources could be internal operational systems, a central data

________________________ WORLD TECHNOLOGIES ________________________

130 Business Intelligence and Analytics

warehouse, or external data. Denormalization is the norm for data modeling techniques in
this system. Given that data marts generally cover only a subset of the data contained in a
data warehouse, they are often easier and faster to implement.

Difference between data warehouse and data mart

Data warehouse Data mart

enterprise-wide data department-wide data

multiple subject areas single subject area

difficult to build easy to build

takes more time to build less time to build

larger memory limited memory

Types of Data Marts

• Dependent data mart

• Independent data mart

• Hybrid data mart

Online analytical processing (OLAP)

OLAP is characterized by a relatively low volume of transactions. Queries are often very
complex and involve aggregations. For OLAP systems, response time is an effectiveness
measure. OLAP applications are widely used by Data Mining techniques. OLAP databas-
es store aggregated, historical data in multi-dimensional schemas (usually star schemas).
OLAP systems typically have data latency of a few hours, as opposed to data marts, where
latency is expected to be closer to one day. The OLAP approach is used to analyze multi-
dimensional data from multiple sources and perspectives. The three basic operations in
OLAP are : Roll-up (Consolidation), Drill-down and Slicing & Dicing.

Online transaction processing (OLTP)

OLTP is characterized by a large number of short on-line transactions (INSERT, UPDATE,
DELETE). OLTP systems emphasize very fast query processing and maintaining data in-
tegrity in multi-access environments. For OLTP systems, effectiveness is measured by the
number of transactions per second. OLTP databases contain detailed and current data. The
schema used to store transactional databases is the entity model (usually 3NF). Normaliza-
tion is the norm for data modeling techniques in this system.

Predictive analysis

Predictive analysis is about finding and quantifying hidden patterns in the data using com-
plex mathematical models that can be used to predict future outcomes. Predictive analysis
is different from OLAP in that OLAP focuses on historical data analysis and is reactive in
nature, while predictive analysis focuses on the future. These systems are also used for
CRM (customer relationship management).

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 131

Software Tools

The typical extract-transform-load (ETL)-based data warehouse uses staging, data integra-
tion, and access layers to house its key functions. The staging layer or staging database stores
raw data extracted from each of the disparate source data systems. The integration layer inte-
grates the disparate data sets by transforming the data from the staging layer often storing this
transformed data in an operational data store (ODS) database. The integrated data are then
moved to yet another database, often called the data warehouse database, where the data is
arranged into hierarchical groups often called dimensions and into facts and aggregate facts.
The combination of facts and dimensions is sometimes called a star schema. The access layer
helps users retrieve data.

This definition of the data warehouse focuses on data storage. The main source of the data is
cleaned, transformed, cataloged and made available for use by managers and other business pro-
fessionals for data mining, online analytical processing, market research and decision support.
However, the means to retrieve and analyze data, to extract, transform and load data, and to man-
age the data dictionary are also considered essential components of a data warehousing system.
Many references to data warehousing use this broader context. Thus, an expanded definition for
data warehousing includes business intelligence tools, tools to extract, transform and load data
into the repository, and tools to manage and retrieve metadata.

Benefits

A data warehouse maintains a copy of information from the source transaction systems. This ar-
chitectural complexity provides the opportunity to:

• Integrate data from multiple sources into a single database and data model. Mere congre-
gation of data to single database so a single query engine can be used to present data is an
ODS.

• Mitigate the problem of database isolation level lock contention in transaction processing
systems caused by attempts to run large, long running, analysis queries in transaction pro-
cessing databases.

• Maintain data history, even if the source transaction systems do not.

• Integrate data from multiple source systems, enabling a central view across the enterprise.
This benefit is always valuable, but particularly so when the organization has grown by
merger.

• Improve data quality, by providing consistent codes and descriptions, flagging or even fix-
ing bad data.

• Present the organization’s information consistently.

• Provide a single common data model for all data of interest regardless of the data’s
source.

• Restructure the data so that it makes sense to the business users.

• Restructure the data so that it delivers excellent query performance, even for complex an-

________________________ WORLD TECHNOLOGIES ________________________

132 Business Intelligence and Analytics

alytic queries, without impacting the operational systems.

• Add value to operational business applications, notably customer relationship manage-
ment (CRM) systems.

• Make decision–support queries easier to write.

• Optimized data warehouse architectures allow data scientists to organize and disambigu-
ate repetitive data.

Generic Environment

The environment for data warehouses and marts includes the following:

• Source systems that provide data to the warehouse or mart;

• Data integration technology and processes that are needed to prepare the data for use;

• Different architectures for storing data in an organization’s data warehouse or data marts;

• Different tools and applications for the variety of users;

• Metadata, data quality, and governance processes must be in place to ensure that the ware-
house or mart meets its purposes.

In regards to source systems listed above, Rainer states, “A common source for the data in data
warehouses is the company’s operational databases, which can be relational databases”.

Regarding data integration, Rainer states, “It is necessary to extract data from source systems,
transform them, and load them into a data mart or warehouse”.

Rainer discusses storing data in an organization’s data warehouse or data marts.

Metadata are data about data. “IT personnel need information about data sources; database, table,
and column names; refresh schedules; and data usage measures”.

Today, the most successful companies are those that can respond quickly and flexibly to market
changes and opportunities. A key to this response is the effective and efficient use of data and in-
formation by analysts and managers. A “data warehouse” is a repository of historical data that are
organized by subject to support decision makers in the organization. Once data are stored in a data
mart or warehouse, they can be accessed.

History

The concept of data warehousing dates back to the late 1980s when IBM researchers Barry Devlin
and Paul Murphy developed the “business data warehouse”. In essence, the data warehousing con-
cept was intended to provide an architectural model for the flow of data from operational systems
to decision support environments. The concept attempted to address the various problems asso-
ciated with this flow, mainly the high costs associated with it. In the absence of a data warehous-
ing architecture, an enormous amount of redundancy was required to support multiple decision
support environments. In larger corporations it was typical for multiple decision support envi-

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 133

ronments to operate independently. Though each environment served different users, they often
required much of the same stored data. The process of gathering, cleaning and integrating data
from various sources, usually from long-term existing operational systems (usually referred to as
legacy systems), was typically in part replicated for each environment. Moreover, the operational
systems were frequently reexamined as new decision support requirements emerged. Often new
requirements necessitated gathering, cleaning and integrating new data from “data marts” that
were tailored for ready access by users.

Key developments in early years of data warehousing were:

• 1960s – General Mills and Dartmouth College, in a joint research project, develop the
terms dimensions and facts.

• 1970s – ACNielsen and IRI provide dimensional data marts for retail sales.

• 1970s – Bill Inmon begins to define and discuss the term: Data Warehouse.

• 1975 – Sperry Univac introduces MAPPER (MAintain, Prepare, and Produce Executive Re-
ports) is a database management and reporting system that includes the world’s first 4GL.
First platform designed for building Information Centers (a forerunner of contemporary
Enterprise Data Warehousing platforms)

• 1983 – Teradata introduces a database management system specifically designed for deci-
sion support.

• 1984 – Metaphor Computer Systems, founded by David Liddle and Don Massaro, releases
Data Interpretation System (DIS). DIS was a hardware/software package and GUI for busi-
ness users to create a database management and analytic system.

• 1988 – Barry Devlin and Paul Murphy publish the article An architecture for a business
and information system where they introduce the term “business data warehouse”.

• 1990 – Red Brick Systems, founded by Ralph Kimball, introduces Red Brick Warehouse, a
database management system specifically for data warehousing.

• 1991 – Prism Solutions, founded by Bill Inmon, introduces Prism Warehouse Manager,
software for developing a data warehouse.

• 1992 – Bill Inmon publishes the book Building the Data Warehouse.

• 1995 – The Data Warehousing Institute, a for-profit organization that promotes data ware-
housing, is founded.

• 1996 – Ralph Kimball publishes the book The Data Warehouse Toolkit.

• 2012 – Bill Inmon developed and made public technology known as “textual disambig-
uation”. Textual disambiguation applies context to raw text and reformats the raw text
and context into a standard data base format. Once raw text is passed through textual
disambiguation, it can easily and efficiently be accessed and analyzed by standard business
intelligence technology. Textual disambiguation is accomplished through the execution of
textual ETL. Textual disambiguation is useful wherever raw text is found, such as in docu-
ments, Hadoop, email, and so forth.

________________________ WORLD TECHNOLOGIES ________________________

134 Business Intelligence and Analytics

Information Storage

Facts

A fact is a value or measurement, which represents a fact about the managed entity or system.

Facts as reported by the reporting entity are said to be at raw level. E.g. in a mobile telephone
system, if a BTS (base transceiver station) received 1,000 requests for traffic channel allocation,
it allocates for 820 and rejects the remaining then it would report 3 facts or measurements to a
management system:

• tch_req_total = 1000

• tch_req_success = 820

• tch_req_fail = 180

Facts at the raw level are further aggregated to higher levels in various dimensions to extract more
service or business-relevant information from it. These are called aggregates or summaries or ag-
gregated facts.

For instance, if there are 3 BTSs in a city, then the facts above can be aggregated from the BTS to
the city level in the network dimension. For example:

• _ _ _ _ _ _ 1 _ _ _ 2 _ _ _ 3tch req success city tch req success bts tch req success bts tch req success bts= + +

• _ _ _ _ (_ _ _ 1 _ _ _ 2 _ _ _ 3) / 3avg tch req success city tch req success bts tch req success bts tch req success bts= + +

Dimensional Versus Normalized Approach for Storage of Data

There are three or more leading approaches to storing data in a data warehouse — the most im-
portant approaches are the dimensional approach and the normalized approach.

The dimensional approach refers to Ralph Kimball’s approach in which it is stated that the data
warehouse should be modeled using a Dimensional Model/star schema. The normalized approach,
also called the 3NF model (Third Normal Form) refers to Bill Inmon’s approach in which it is stat-
ed that the data warehouse should be modeled using an E-R model/normalized model.

In a dimensional approach, transaction data are partitioned into “facts”, which are generally nu-
meric transaction data, and “dimensions”, which are the reference information that gives context
to the facts. For example, a sales transaction can be broken up into facts such as the number of
products ordered and the total price paid for the products, and into dimensions such as order date,
customer name, product number, order ship-to and bill-to locations, and salesperson responsible
for receiving the order.

A key advantage of a dimensional approach is that the data warehouse is easier for the user to
understand and to use. Also, the retrieval of data from the data warehouse tends to operate very
quickly. Dimensional structures are easy to understand for business users, because the structure is
divided into measurements/facts and context/dimensions. Facts are related to the organization’s
business processes and operational system whereas the dimensions surrounding them contain
context about the measurement (Kimball, Ralph 2008). Another advantage offered by dimension-

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 135

al model is that it does not involve a relational database every time. Thus, this type of modeling
technique is very useful for end-user queries in data warehouse.

The main disadvantages of the dimensional approach are the following:

1. In order to maintain the integrity of facts and dimensions, loading the data warehouse with
data from different operational systems is complicated.

2. It is difficult to modify the data warehouse structure if the organization adopting the di-
mensional approach changes the way in which it does business.

In the normalized approach, the data in the data warehouse are stored following, to a degree, da-
tabase normalization rules. Tables are grouped together by subject areas that reflect general data
categories (e.g., data on customers, products, finance, etc.). The normalized structure divides data
into entities, which creates several tables in a relational database. When applied in large enterpris-
es the result is dozens of tables that are linked together by a web of joins. Furthermore, each of
the created entities is converted into separate physical tables when the database is implemented
(Kimball, Ralph 2008). The main advantage of this approach is that it is straightforward to add in-
formation into the database. Some disadvantages of this approach are that, because of the number
of tables involved, it can be difficult for users to join data from different sources into meaningful
information and to access the information without a precise understanding of the sources of data
and of the data structure of the data warehouse.

Both normalized and dimensional models can be represented in entity-relationship diagrams as
both contain joined relational tables. The difference between the two models is the degree of nor-
malization (also known as Normal Forms). These approaches are not mutually exclusive, and there
are other approaches. Dimensional approaches can involve normalizing data to a degree (Kimball,
Ralph 2008).

In Information-Driven Business, Robert Hillard proposes an approach to comparing the two ap-
proaches based on the information needs of the business problem. The technique shows that nor-
malized models hold far more information than their dimensional equivalents (even when the
same fields are used in both models) but this extra information comes at the cost of usability. The
technique measures information quantity in terms of information entropy and usability in terms
of the Small Worlds data transformation measure.

Design Methods

Bottom-up Design

In the bottom-up approach, data marts are first created to provide reporting and analytical capa-
bilities for specific business processes. These data marts can then be integrated to create a compre-
hensive data warehouse. The data warehouse bus architecture is primarily an implementation of
“the bus”, a collection of conformed dimensions and conformed facts, which are dimensions that
are shared (in a specific way) between facts in two or more data marts.

Top-down Design

The top-down approach is designed using a normalized enterprise data model. “Atomic” data, that

________________________ WORLD TECHNOLOGIES ________________________

136 Business Intelligence and Analytics

is, data at the greatest level of detail, are stored in the data warehouse. Dimensional data marts
containing data needed for specific business processes or specific departments are created from
the data warehouse.

Hybrid Design

Data warehouses (DW) often resemble the hub and spokes architecture. Legacy systems feeding
the warehouse often include customer relationship management and enterprise resource plan-
ning, generating large amounts of data. To consolidate these various data models, and facilitate
the extract transform load process, data warehouses often make use of an operational data store,
the information from which is parsed into the actual DW. To reduce data redundancy, larger sys-
tems often store the data in a normalized way. Data marts for specific reports can then be built on
top of the DW.

The DW database in a hybrid solution is kept on third normal form to eliminate data redundan-
cy. A normal relational database, however, is not efficient for business intelligence reports where
dimensional modelling is prevalent. Small data marts can shop for data from the consolidated
warehouse and use the filtered, specific data for the fact tables and dimensions required. The DW
provides a single source of information from which the data marts can read, providing a wide
range of business information. The hybrid architecture allows a DW to be replaced with a master
data management solution where operational, not static information could reside.

The Data Vault Modeling components follow hub and spokes architecture. This modeling style is a
hybrid design, consisting of the best practices from both third normal form and star schema. The
Data Vault model is not a true third normal form, and breaks some of its rules, but it is a top-down
architecture with a bottom up design. The Data Vault model is geared to be strictly a data ware-
house. It is not geared to be end-user accessible, which when built, still requires the use of a data
mart or star schema based release area for business purposes.

Versus Operational System

Operational systems are optimized for preservation of data integrity and speed of recording of
business transactions through use of database normalization and an entity-relationship model.
Operational system designers generally follow the Codd rules of database normalization in order
to ensure data integrity. Codd defined five increasingly stringent rules of normalization. Fully nor-
malized database designs (that is, those satisfying all five Codd rules) often result in information
from a business transaction being stored in dozens to hundreds of tables. Relational databases are
efficient at managing the relationships between these tables. The databases have very fast insert/
update performance because only a small amount of data in those tables is affected each time a
transaction is processed. Finally, in order to improve performance, older data are usually periodi-
cally purged from operational systems.

Data warehouses are optimized for analytic access patterns. Analytic access patterns generally
involve selecting specific fields and rarely if ever ‘select *’ as is more common in operational da-
tabases. Because of these differences in access patterns, operational databases (loosely, OLTP)
benefit from the use of a row-oriented DBMS whereas analytics databases (loosely, OLAP) benefit
from the use of a column-oriented DBMS. Unlike operational systems which maintain a snapshot

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 137

of the business, data warehouses generally maintain an infinite history which is implemented through
ETL processes that periodically migrate data from the operational systems over to the data warehouse.

Evolution in Organization Use

These terms refer to the level of sophistication of a data warehouse:

Offline operational data warehouse

Data warehouses in this stage of evolution are updated on a regular time cycle (usually dai-
ly, weekly or monthly) from the operational systems and the data is stored in an integrated
reporting-oriented data

Offline data warehouse

Data warehouses at this stage are updated from data in the operational systems on a reg-
ular basis and the data warehouse data are stored in a data structure designed to facilitate
reporting.

On time data warehouse

Online Integrated Data Warehousing represent the real time Data warehouses stage data
in the warehouse is updated for every transaction performed on the source data

Integrated data warehouse

These data warehouses assemble data from different areas of business, so users can look up
the information they need across other systems.

Data Mart

A data mart is the access layer of the data warehouse environment that is used to get data out to
the users. The data mart is a subset of the data warehouse and is usually oriented to a specific
business line or team. Whereas data warehouses have an enterprise-wide depth, the information
in data marts pertains to a single department. In some deployments, each department or business
unit is considered the owner of its data mart including all the hardware, software and data. This
enables each department to isolate the use, manipulation and development of their data. In other
deployments where conformed dimensions are used, this business unit ownership will not hold
true for shared dimensions like customer, product, etc.

Organizations build data warehouses and data marts because the information in the database is
not organized in a way that makes it readily accessible, requiring queries that are too complicated
or resource-consuming.

While transactional databases are designed to be updated, data warehouses or marts are read
only. Data warehouses are designed to access large groups of related records. Data marts improve
end-user response time by allowing users to have access to the specific type of data they need to
view most often by providing the data in a way that supports the collective view of a group of users.

________________________ WORLD TECHNOLOGIES ________________________

138 Business Intelligence and Analytics

A data mart is basically a condensed and more focused version of a data warehouse that reflects the
regulations and process specifications of each business unit within an organization. Each data mart is
dedicated to a specific business function or region. This subset of data may span across many or all of
an enterprise’s functional subject areas. It is common for multiple data marts to be used in order to
serve the needs of each individual business unit (different data marts can be used to obtain specific
information for various enterprise departments, such as accounting, marketing, sales, etc.).

The related term spreadmart is a derogatory label describing the situation that occurs when one
or more business analysts develop a system of linked spreadsheets to perform a business analysis,
then grow it to a size and degree of complexity that makes it nearly impossible to maintain.

Data mart vs data warehouse

Data warehouse:

• Holds multiple subject areas

• Holds very detailed information

• Works to integrate all data sources

• Does not necessarily use a dimensional model but feeds dimensional models.

Data mart:

• Often holds only one subject area- for example, Finance, or Sales

• May hold more summarized data (although many hold full detail)

• Concentrates on integrating information from a given subject area or set of source systems

• Is built focused on a dimensional model using a star schema.

Design Schemas

• Star schema - fairly popular design choice; enables a relational database to emulate the
analytical functionality of a multidimensional database

• Snowflake schema

Reasons for Creating a Data Mart

• Easy access to frequently needed data

• Creates collective view by a group of users

• Improves end-user response time

• Ease of creation

• Lower cost than implementing a full data warehouse

• Potential users are more clearly defined than in a full data warehouse

• Contains only business essential data and is less cluttered.

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 139

Dependent Data Mart

According to the Inmon school of data warehousing, a dependent data mart is a logical subset
(view) or a physical subset (extract) of a larger data warehouse, isolated for one of the following
reasons:

• A need refreshment for a special data model or schema: e.g., to restructure for OLAP

• Performance: to offload the data mart to a separate computer for greater efficiency or to
eliminate the need to manage that workload on the centralized data warehouse.

• Security: to separate an authorized data subset selectively

• Expediency: to bypass the data governance and authorizations required to incorporate a
new application on the Enterprise Data Warehouse

• Proving Ground: to demonstrate the viability and ROI (return on investment) potential of
an application prior to migrating it to the Enterprise Data Warehouse

• Politics: a coping strategy for IT (Information Technology) in situations where a user group
has more influence than funding or is not a good citizen on the centralized data warehouse.

• Politics: a coping strategy for consumers of data in situations where a data warehouse team
is unable to create a usable data warehouse.

According to the Inmon school of data warehousing, tradeoffs inherent with data marts include
limited scalability, duplication of data, data inconsistency with other silos of information, and in-
ability to leverage enterprise sources of data.

The alternative school of data warehousing is that of Ralph Kimball. In his view, a data warehouse
is nothing more than the union of all the data marts. This view helps to reduce costs and provides
fast development, but can create an inconsistent data warehouse, especially in large organizations.
Therefore, Kimball’s approach is more suitable for small-to-medium corporations.

Master Data Management

In business, master data management (MDM) comprises the processes, governance, policies, stan-
dards and tools that consistently define and manage the critical data of an organization to provide
a single point of reference.

The data that is mastered may include:

• reference data – the business objects for transactions, and the dimensions for analysis

• analytical data – supports decision making

In computing, a master data management tool can be used to support master data management
by removing duplicates, standardizing data (mass maintaining), and incorporating rules to elim-
inate incorrect data from entering the system in order to create an authoritative source of master
data. Master data are the products, accounts and parties for which the business transactions are

________________________ WORLD TECHNOLOGIES ________________________

140 Business Intelligence and Analytics

completed. The root cause problem stems from business unit and product line segmentation, in
which the same customer will be serviced by different product lines, with redundant data being
entered about the customer (aka party in the role of customer) and account in order to process the
transaction. The redundancy of party and account data is compounded in the front to back office
life cycle, where the authoritative single source for the party, account and product data is needed
but is often once again redundantly entered or augmented.

Master data management has the objective of providing processes for collecting, aggregating,
matching, consolidating, quality-assuring, persisting and distributing such data throughout an
organization to ensure consistency and control in the ongoing maintenance and application use of
this information.

The term recalls the concept of a master file from an earlier computing era.

Definition

Master data management (MDM) is a comprehensive method of enabling an enterprise to link
all of its critical data to one file, called a master file, that provides a common point of reference.
When properly done, master data management streamlines data sharing among personnel and
departments. In addition, master data management can facilitate computing in multiple system
architectures, platforms and applications.

At its core Master Data Management (MDM) can be viewed as a “discipline for specialized quality
improvement” defined by the policies and procedures put in place by a data governance organiza-
tion. The ultimate goal being to provide the end user community with a “trusted single version of
the truth” from which to base decisions.

Issues

At a basic level, master data management seeks to ensure that an organization does not use multi-
ple (potentially inconsistent) versions of the same master data in different parts of its operations,
which can occur in large organizations. A typical example of poor master data management is
the scenario of a bank at which a customer has taken out a mortgage and the bank begins to send
mortgage solicitations to that customer, ignoring the fact that the person already has a mortgage
account relationship with the bank. This happens because the customer information used by the
marketing section within the bank lacks integration with the customer information used by the
customer services section of the bank. Thus the two groups remain unaware that an existing cus-
tomer is also considered a sales lead. The process of record linkage is used to associate different
records that correspond to the same entity, in this case the same person.

Other problems include (for example) issues with the quality of data, consistent classification and
identification of data, and data-reconciliation issues. Master data management of disparate data
systems requires data transformations as the data extracted from the disparate source data system
is transformed and loaded into the master data management hub. To synchronize the disparate
source master data, the managed master data extracted from the master data management hub is
again transformed and loaded into the disparate source data system as the master data is updated.
As with other Extract, Transform, Load-based data movement, these processes are expensive and

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 141

inefficient to develop and to maintain which greatly reduces the return on investment for the mas-
ter data management product.

One of the most common reasons some large corporations experience massive issues with master
data management is growth through mergers or acquisitions. Any organizations which merge will
typically create an entity with duplicate master data (since each likely had at least one master data-
base of its own prior to the merger). Ideally, database administrators resolve this problem through
deduplication of the master data as part of the merger. In practice, however, reconciling several
master data systems can present difficulties because of the dependencies that existing applications
have on the master databases. As a result, more often than not the two systems do not fully merge,
but remain separate, with a special reconciliation process defined that ensures consistency be-
tween the data stored in the two systems. Over time, however, as further mergers and acquisitions
occur, the problem multiplies, more and more master databases appear, and data-reconciliation
processes become extremely complex, and consequently unmanageable and unreliable. Because
of this trend, one can find organizations with 10, 15, or even as many as 100 separate, poorly inte-
grated master databases, which can cause serious operational problems in the areas of customer
satisfaction, operational efficiency, decision support, and regulatory compliance.

Solutions

Processes commonly seen in master data management include source identification, data collec-
tion, data transformation, normalization, rule administration, error detection and correction, data
consolidation, data storage, data distribution, data classification, taxonomy services, item master
creation, schema mapping, product codification, data enrichment and data governance.

The selection of entities considered for master data management depends somewhat on the na-
ture of an organization. In the common case of commercial enterprises, master data management
may apply to such entities as customer (customer data integration), product (product information
management), employee, and vendor. Master data management processes identify the sources
from which to collect descriptions of these entities. In the course of transformation and normaliza-
tion, administrators adapt descriptions to conform to standard formats and data domains, mak-
ing it possible to remove duplicate instances of any entity. Such processes generally result in an
organizational master data management repository, from which all requests for a certain entity
instance produce the same description, irrespective of the originating sources and the requesting
destination.

The tools include data networks, file systems, a data warehouse, data marts, an operational data
store, data mining, data analysis, data visualization, data federation and data virtualization. One
of the newest tools, virtual master data management utilizes data virtualization and a persistent
metadata server to implement a multi-level automated master data management hierarchy.

Transmission of Master Data

There are several ways in which master data may be collated and distributed to other systems. This
includes:

• Data consolidation – The process of capturing master data from multiple sources and in-

________________________ WORLD TECHNOLOGIES ________________________

142 Business Intelligence and Analytics

tegrating into a single hub (operational data store) for replication to other destination sys-
tems.

• Data federation – The process of providing a single virtual view of master data from one or
more sources to one or more destination systems.

• Data propagation – The process of copying master data from one system to another, typi-
cally through point-to-point interfaces in legacy systems.

Dimension (Data Warehouse)

A dimension is a structure that categorizes facts and measures in order to enable users to answer
business questions. Commonly used dimensions are people, products, place and time.

In a data warehouse, dimensions provide structured labeling information to otherwise unordered
numeric measures. The dimension is a data set composed of individual, non-overlapping data
elements. The primary functions of dimensions are threefold: to provide filtering, grouping and
labelling.

These functions are often described as “slice and dice”. Slicing refers to filtering data. Dicing refers
to grouping data. A common data warehouse example involves sales as the measure, with custom-
er and product as dimensions. In each sale a customer buys a product. The data can be sliced by
removing all customers except for a group under study, and then diced by grouping by product.

A dimensional data element is similar to a categorical variable in statistics.

Typically dimensions in a data warehouse are organized internally into one or more hierarchies.
“Date” is a common dimension, with several possible hierarchies:

• “Days (are grouped into) Months (which are grouped into) Years”,

• “Days (are grouped into) Weeks (which are grouped into) Years”

• “Days (are grouped into) Months (which are grouped into) Quarters (which are grouped
into) Years”

• etc.

Types

Conformed Dimension

A conformed dimension is a set of data attributes that have been physically referenced in multiple
database tables using the same key value to refer to the same structure, attributes, domain values,
definitions and concepts. A conformed dimension cuts across many facts.

Dimensions are conformed when they are either exactly the same (including keys) or one is a per-
fect subset of the other. Most important, the row headers produced in two different answer sets
from the same conformed dimension(s) must be able to match perfectly.

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 143

Conformed dimensions are either identical or strict mathematical subsets of the most granular,
detailed dimension. Dimension tables are not conformed if the attributes are labeled differently
or contain different values. Conformed dimensions come in several different flavors. At the most
basic level, conformed dimensions mean exactly the same thing with every possible fact table to
which they are joined. The date dimension table connected to the sales facts is identical to the date
dimension connected to the inventory facts.

Junk Dimension

A junk dimension is a convenient grouping of typically low-cardinality flags and indicators.
By creating an abstract dimension, these flags and indicators are removed from the fact table
while placing them into a useful dimensional framework. A Junk Dimension is a dimension
table consisting of attributes that do not belong in the fact table or in any of the existing di-
mension tables. The nature of these attributes is usually text or various flags, e.g. non-generic
comments or just simple yes/no or true/false indicators. These kinds of attributes are typically
remaining when all the obvious dimensions in the business process have been identified and
thus the designer is faced with the challenge of where to put these attributes that do not belong
in the other dimensions.

One solution is to create a new dimension for each of the remaining attributes, but due to their
nature, it could be necessary to create a vast number of new dimensions resulting in a fact table
with a very large number of foreign keys. The designer could also decide to leave the remaining
attributes in the fact table but this could make the row length of the table unnecessarily large if, for
example, the attributes is a long text string.

The solution to this challenge is to identify all the attributes and then put them into one or several
Junk Dimensions. One Junk Dimension can hold several true/false or yes/no indicators that have
no correlation with each other, so it would be convenient to convert the indicators into a more de-
scribing attribute. An example would be an indicator about whether a package had arrived, instead
of indicating this as “yes” or “no”, it would be converted into “arrived” or “pending” in the junk di-
mension. The designer can choose to build the dimension table so it ends up holding all the indica-
tors occurring with every other indicator so that all combinations are covered. This sets up a fixed
size for the table itself which would be 2x rows, where x is the number of indicators. This solution is
appropriate in situations where the designer would expect to encounter a lot of different combina-
tions and where the possible combinations are limited to an acceptable level. In a situation where
the number of indicators are large, thus creating a very big table or where the designer only expect
to encounter a few of the possible combinations, it would be more appropriate to build each row in
the junk dimension as new combinations are encountered. To limit the size of the tables, multiple
junk dimensions might be appropriate in other situations depending on the correlation between
various indicators.

Junk dimensions are also appropriate for placing attributes like non-generic comments from the
fact table. Such attributes might consist of data from an optional comment field when a customer
places an order and as a result will probably be blank in many cases. Therefore, the junk dimension
should contain a single row representing the blanks as a surrogate key that will be used in the fact
table for every row returned with a blank comment field

________________________ WORLD TECHNOLOGIES ________________________

144 Business Intelligence and Analytics

Degenerate Dimension

A degenerate dimension is a key, such as a transaction number, invoice number, ticket number, or
bill-of-lading number, that has no attributes and hence does not join to an actual dimension table.
Degenerate dimensions are very common when the grain of a fact table represents a single trans-
action item or line item because the degenerate dimension represents the unique identifier of the
parent. Degenerate dimensions often play an integral role in the fact table’s primary key.

Role-playing Dimension

Dimensions are often recycled for multiple applications within the same database. For instance,
a “Date” dimension can be used for “Date of Sale”, as well as “Date of Delivery”, or “Date of Hire”.
This is often referred to as a “role-playing dimension”.

Use of ISO Representation Terms

When referencing data from a metadata registry such as ISO/IEC 11179, representation terms
such as Indicator (a boolean true/false value), Code (a set of non-overlapping enumerated values)
are typically used as dimensions. For example, using the National Information Exchange Model
(NIEM) the data element name would be PersonGenderCode and the enumerated values would be
male, female and unknown.

Dimension Table

In data warehousing, a dimension table is one of the set of companion tables to a fact table.

The fact table contains business facts (or measures), and foreign keys which refer to candidate
keys (normally primary keys) in the dimension tables.

Contrary to fact tables, dimension tables contain descriptive attributes (or fields) that are typically
textual fields (or discrete numbers that behave like text). These attributes are designed to serve
two critical purposes: query constraining and/or filtering, and query result set labeling.

Dimension attributes should be:

• Verbose (labels consisting of full words)

• Descriptive

• Complete (having no missing values)

• Discretely valued (having only one value per dimension table row)

• Quality assured (having no misspellings or impossible values)

Dimension table rows are uniquely identified by a single key field. It is recommended that the key
field be a simple integer because a key value is meaningless, used only for joining fields between
the fact and dimension tables. Dimension tables often use primary keys that are also surrogate
keys. Surrogate keys are often auto-generated (e.g. a Sybase or SQL Server “identity column”, a
PostgreSQL or Informix serial, an Oracle SEQUENCE or a column defined with AUTO_INCRE-
MENT in MySQL).

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 145

The use of surrogate dimension keys brings several advantages, including:

• Performance. Join processing is made much more efficient by using a single field (the sur-
rogate key)

• Buffering from operational key management practices. This prevents situations where re-
moved data rows might reappear when their natural keys get reused or reassigned after a
long period of dormancy

• Mapping to integrate disparate sources

• Handling unknown or not-applicable connections

• Tracking changes in dimension attribute values

Although surrogate key use places a burden put on the ETL system, pipeline processing can be
improved, and ETL tools have built-in improved surrogate key processing.

The goal of a dimension table is to create standardized, conformed dimensions that can be shared
across the enterprise’s data warehouse environment, and enable joining to multiple fact tables
representing various business processes.

Conformed dimensions are important to the enterprise nature of DW/BI systems because they
promote:

• Consistency. Every fact table is filtered consistently, so that query answers are labeled con-
sistently.

• Integration. Queries can drill into different process fact tables separately for each individ-
ual fact table, then join the results on common dimension attributes.

• Reduced development time to market. The common dimensions are available without rec-
reating them.

Over time, the attributes of a given row in a dimension table may change. For example, the ship-
ping address for a company may change. Kimball refers to this phenomenon as Slowly Changing
Dimensions. Strategies for dealing with this kind of change are divided into three categories:

• Type One. Simply overwrite the old value(s).

• Type Two. Add a new row containing the new value(s), and distinguish between the rows
using Tuple-versioning techniques.

• Type Three. Add a new attribute to the existing row.

Common Patterns

Date and time

Since many fact tables in a data warehouse are time series of observations, one or more date di-
mensions are often needed. One of the reasons to have date dimensions is to place calendar knowl-
edge in the data warehouse instead of hard coded in an application. While a simple SQL date/
timestamp is useful for providing accurate information about the time a fact was recorded, it can

________________________ WORLD TECHNOLOGIES ________________________

146 Business Intelligence and Analytics

not give information about holidays, fiscal periods, etc. An SQL date/timestamp can still be useful
to store in the fact table, as it allows for precise calculations.

Having both the date and time of day in the same dimension, may easily result in a huge dimen-
sion with millions of rows. If a high amount of detail is needed it is usually a good idea to split date
and time into two or more separate dimensions. A time dimension with a grain of seconds in a day
will only have 86400 rows. A more or less detailed grain for date/time dimensions can be chosen
depending on needs. As examples, date dimensions can be accurate to year, quarter, month or day
and time dimensions can be accurate to hours, minutes or seconds.

As a rule of thumb, time of day dimension should only be created if hierarchical groupings are
needed or if there are meaningful textual descriptions for periods of time within the day (ex. “eve-
ning rush” or “first shift”).

If the rows in a fact table are coming from several timezones, it might be useful to store date and time
in both local time and a standard time. This can be done by having two dimensions for each date/time
dimension needed – one for local time, and one for standard time. Storing date/time in both local and
standard time, will allow for analysis on when facts are created in a local setting and in a global setting
as well. The standard time chosen can be a global standard time (ex. UTC), it can be the local time of
the business’ headquarter, or any other time zone that would make sense to use.

Slowly Changing Dimension

Dimensions in data management and data warehousing contain relatively static data about such
entities as geographical locations, customers, or products. Data captured by Slowly Changing Di-
mensions (SCDs) change slowly but unpredictably, rather than according to a regular schedule.

Some scenarios can cause Referential integrity problems.

For example, a database may contain a fact table that stores sales records. This fact table would be
linked to dimensions by means of foreign keys. One of these dimensions may contain data about
the company’s salespeople: e.g., the regional offices in which they work. However, the salespeo-
ple are sometimes transferred from one regional office to another. For historical sales reporting
purposes it may be necessary to keep a record of the fact that a particular sales person had been
assigned to a particular regional office at an earlier date, whereas that sales person is now assigned
to a different regional office.

Dealing with these issues involves SCD management methodologies referred to as Type 0 through
6. Type 6 SCDs are also sometimes called Hybrid SCDs.

Type 0: Retain Original

The Type 0 method is passive. It manages dimensional changes and no action is performed. Values
remain as they were at the time the dimension record was first inserted. In certain circumstances
history is preserved with a Type 0. Higher order types are employed to guarantee the preservation
of history whereas Type 0 provides the least or no control. This is rarely used.

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 147

Type 1: Overwrite

This methodology overwrites old with new data, and therefore does not track historical data.

Example of a supplier table:

Supplier_Key Supplier_Code Supplier_Name Supplier_State

123 ABC Acme Supply Co CA

In the above example, Supplier_Code is the natural key and Supplier_Key is a surrogate key. Tech-
nically, the surrogate key is not necessary, since the row will be unique by the natural key (Suppli-
er_Code). However, to optimize performance on joins use integer rather than character keys (un-
less the number of bytes in the character key is less than the number of bytes in the integer key).

If the supplier relocates the headquarters to Illinois the record would be overwritten:

Supplier_Key Supplier_Code Supplier_Name Supplier_State

123 ABC Acme Supply Co IL

The disadvantage of the Type 1 method is that there is no history in the data warehouse. It has the
advantage however that it’s easy to maintain.

If one has calculated an aggregate table summarizing facts by state, it will need to be recalculated
when the Supplier_State is changed.

Type 2: Add New Row

This method tracks historical data by creating multiple records for a given natural key in the di-
mensional tables with separate surrogate keys and/or different version numbers. Unlimited histo-
ry is preserved for each insert.

For example, if the supplier relocates to Illinois the version numbers will be incremented sequen-
tially:

Supplier_Key Supplier_Code Supplier_Name Supplier_State Version.

123 ABC Acme Supply Co CA 0

124 ABC Acme Supply Co IL 1

Another method is to add ‘effective date’ columns.

Supplier_Key Supplier_Code Supplier_Name Supplier_State Start_Date End_Date

123 ABC Acme Supply Co CA 01-Jan-2000 21-Dec-2004

124 ABC Acme Supply Co IL 22-Dec-2004 NULL

The null End_Date in row two indicates the current tuple version. In some cases, a standardized
surrogate high date (e.g. 9999-12-31) may be used as an end date, so that the field can be included
in an index, and so that null-value substitution is not required when querying.

Transactions that reference a particular surrogate key (Supplier_Key) are then permanently bound
to the time slices defined by that row of the slowly changing dimension table. An aggregate table

________________________ WORLD TECHNOLOGIES ________________________

148 Business Intelligence and Analytics

summarizing facts by state continues to reflect the historical state, i.e. the state the supplier was
in at the time of the transaction; no update is needed. To reference the entity via the natural key,
it is necessary to remove the unique constraint making Referential integrity by DBMS impossible.

If there are retroactive changes made to the contents of the dimension, or if new attributes are
added to the dimension (for example a Sales_Rep column) which have different effective dates
from those already defined, then this can result in the existing transactions needing to be updated
to reflect the new situation. This can be an expensive database operation, so Type 2 SCDs are not
a good choice if the dimensional model is subject to change.

Type 3: Add New Attribute

This method tracks changes using separate columns and preserves limited history. The Type 3
preserves limited history as it is limited to the number of columns designated for storing histori-
cal data. The original table structure in Type 1 and Type 2 is the same but Type 3 adds additional
columns. In the following example, an additional column has been added to the table to record the
supplier’s original state - only the previous history is stored.

Supplier_
Key

Supplier_
Code

Supplier_
Name

Original_Supplier_State
Effective_

Date
Current_Supplier_

State

123 ABC
Acme Supply

Co
CA 22-Dec-2004 IL

This record contains a column for the original state and current state—cannot track the changes if
the supplier relocates a second time.

One variation of this is to create the field Previous_Supplier_State instead of Original_Suppli-
er_State which would track only the most recent historical change.

Type 4: Add History Table

The Type 4 method is usually referred to as using “history tables”, where one table keeps the cur-
rent data, and an additional table is used to keep a record of some or all changes. Both the surro-
gate keys are referenced in the Fact table to enhance query performance.

For the above example the original table name is Supplier and the history table is Supplier_His-
tory.

Supplier

Supplier_key Supplier_Code Supplier_Name Supplier_State

124 ABC Acme & Johnson Supply Co IL

Supplier_History

Supplier_key Supplier_Code Supplier_Name Supplier_State Create_Date

123 ABC Acme Supply Co CA 14-June-2003

124 ABC Acme & Johnson Supply Co IL 22-Dec-2004

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 149

This method resembles how database audit tables and change data capture techniques function.

Type 6: Hybrid

The Type 6 method combines the approaches of types 1, 2 and 3 (1 + 2 + 3 = 6). One possible ex-
planation of the origin of the term was that it was coined by Ralph Kimball during a conversation
with Stephen Pace from Kalido. Ralph Kimball calls this method “Unpredictable Changes with
Single-Version Overlay” in The Data Warehouse Toolkit.

The Supplier table starts out with one record for our example supplier:

Supplier_
Key

Row_
Key

Supplier_
Code

Supplier_
Name

Current_
State

Historical_
State

Start_
Date

End_
Date

Current_
Flag

123 1 ABC
Acme Supply

Co
CA CA

01-Jan-
2000

31-Dec-
2009

Y

The Current_State and the Historical_State are the same. The optional Current_Flag attribute
indicates that this is the current or most recent record for this supplier.

When Acme Supply Company moves to Illinois, we add a new record, as in Type 2 processing,
however a row key is included to ensure we have a unique key for each row:

Supplier_
Key

Row_
Key

Supplier_
Code

Supplier_
Name

Current_
State

Historical_
State

Start_
Date

End_
Date

Current_
Flag

123 1 ABC
Acme Supply

Co
IL CA

01-Jan-
2000

21-Dec-
2004

N

123 2 ABC
Acme Supply

Co
IL IL

22-Dec-
2004

31-Dec-
2009

Y

We overwrite the Current_Flag information in the first record (Row_Key = 1) with the new infor-
mation, as in Type 1 processing. We create a new record to track the changes, as in Type 2 pro-
cessing. And we store the history in a second State column (Historical_State), which incorporates
Type 3 processing.

For example, if the supplier were to relocate again, we would add another record to the Supplier
dimension, and we would overwrite the contents of the Current_State column:

Supplier_
Key

Row_
Key

Supplier_
Code

Supplier_
Name

Current_
State

Historical_
State

Start_
Date

End_
Date

Current_
Flag

123 1 ABC
Acme Supply

Co
NY CA

01-Jan-
2000

21-Dec-
2004

N

123 2 ABC
Acme Supply

Co
NY IL

22-Dec-
2004

03-Feb-
2008

N

123 3 ABC
Acme Supply

Co
NY NY

04-Feb-
2008

31-Dec-
2009

Y

Note that, for the current record (Current_Flag = ‘Y’), the Current_State and the Historical_State
are always the same.

________________________ WORLD TECHNOLOGIES ________________________

150 Business Intelligence and Analytics

Type 2 / type 6 Fact Implementation

Type 2 Surrogate Key with Type 3 Attribute

In many Type 2 and Type 6 SCD implementations, the surrogate key from the dimension is put
into the fact table in place of the natural key when the fact data is loaded into the data repository.
The surrogate key is selected for a given fact record based on its effective date and the Start_Date
and End_Date from the dimension table. This allows the fact data to be easily joined to the correct
dimension data for the corresponding effective date.

Here is the Supplier table as we created it above using Type 6 Hybrid methodology:

Supplier_
Key

Supplier_
Code

Supplier_
Name

Current_
State

Historical_
State

Start_
Date

End_
Date

Current_
Flag

123 ABC
Acme Supply

Co
NY CA

01-Jan-
2000

21-Dec-
2004

N

124 ABC
Acme Supply

Co
NY IL

22-Dec-
2004

03-Feb-
2008

N

125 ABC
Acme Supply

Co
NY NY

04-Feb-
2008

31-Dec-
9999

Y

Once the Delivery table contains the correct Supplier_Key, it can easily be joined to the Supplier
table using that key. The following SQL retrieves, for each fact record, the current supplier state
and the state the supplier was located in at the time of the delivery:

SELECT

 delivery.delivery_cost,

 supplier.supplier_name,

 supplier.historical_state,

 supplier.current_state

FROM delivery

INNER JOIN supplier

 ON delivery.supplier_key = supplier.supplier_key

Pure type 6 Implementation

Having a Type 2 surrogate key for each time slice can cause problems if the dimension is subject
to change.

A pure Type 6 implementation does not use this, but uses a Surrogate Key for each master data
item (e.g. each unique supplier has a single surrogate key).

This avoids any changes in the master data having an impact on the existing transaction data.

It also allows more options when querying the transactions.

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 151

Here is the Supplier table using the pure Type 6 methodology:

Supplier_Key Supplier_Code Supplier_Name Supplier_State Start_Date End_Date

456 ABC Acme Supply Co CA 01-Jan-2000 21-Dec-2004

456 ABC Acme Supply Co IL 22-Dec-2004 03-Feb-2008

456 ABC Acme Supply Co NY 04-Feb-2008 31-Dec-9999

The following example shows how the query must be extended to ensure a single supplier record
is retrieved for each transaction.

SELECT

 supplier.supplier_code,

 supplier.supplier_state

FROM supplier

INNER JOIN delivery

 ON supplier.supplier_key = delivery.supplier_key

 AND delivery.delivery_date BETWEEN supplier.start_date AND supplier.end_date

A fact record with an effective date (Delivery_Date) of August 9, 2001 will be linked to Suppli-
er_Code of ABC, with a Supplier_State of ‘CA’. A fact record with an effective date of October 11,
2007 will also be linked to the same Supplier_Code ABC, but with a Supplier_State of ‘IL’.

Whilst more complex, there are a number of advantages of this approach, including:

1. Referential integrity by DBMS is now possible, but one cannot use Supplier_Code as for-
eign key on Product table and using Supplier_Key as foreign key each product is tied on
specific time slice.

2. If there is more than one date on the fact (e.g. Order Date, Delivery Date, Invoice Payment
Date) one can choose which date to use for a query.

3. You can do “as at now”, “as at transaction time” or “as at a point in time” queries by chang-
ing the date filter logic.

4. You don’t need to reprocess the Fact table if there is a change in the dimension table (e.g.
adding additional fields retrospectively which change the time slices, or if one makes a mis-
take in the dates on the dimension table one can correct them easily).

5. You can introduce bi-temporal dates in the dimension table.

6. You can join the fact to the multiple versions of the dimension table to allow reporting of
the same information with different effective dates, in the same query.

The following example shows how a specific date such as ‘2012-01-01 00:00:00’ (which could be
the current datetime) can be used.

________________________ WORLD TECHNOLOGIES ________________________

152 Business Intelligence and Analytics

SELECT

 supplier.supplier_code,

 supplier.supplier_state

FROM supplier

INNER JOIN delivery

 ON supplier.supplier_key = delivery.supplier_key

 AND ‘2012-01-01 00:00:00’ BETWEEN supplier.start_date AND supplier.end_date

Both Surrogate and Natural Key

An alternative implementation is to place both the surrogate key and the natural key into the fact
table. This allows the user to select the appropriate dimension records based on:

• the primary effective date on the fact record (above),

• the most recent or current information,

• any other date associated with the fact record.

This method allows more flexible links to the dimension, even if one has used the Type 2 approach
instead of Type 6.

Here is the Supplier table as we might have created it using Type 2 methodology:

Supplier_Key Supplier_Code Supplier_Name Supplier_State Start_Date End_Date Current_Flag

123 ABC Acme Supply Co CA
01-Jan-

2000
21-Dec-

2004
N

124 ABC Acme Supply Co IL
22-Dec-

2004
03-Feb-

2008
N

125 ABC Acme Supply Co NY
04-Feb-

2008
31-Dec-

9999
Y

The following SQL retrieves the most current Supplier_Name and Supplier_State for each fact
record:

SELECT

 delivery.delivery_cost,

 supplier.supplier_name,

 supplier.supplier_state

FROM delivery

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 153

INNER JOIN supplier

 ON delivery.supplier_code = supplier.supplier_code

WHERE supplier.current_flag = ‘Y’

If there are multiple dates on the fact record, the fact can be joined to the dimension using another
date instead of the primary effective date. For instance, the Delivery table might have a primary
effective date of Delivery_Date, but might also have an Order_Date associated with each record.

The following SQL retrieves the correct Supplier_Name and Supplier_State for each fact record
based on the Order_Date:

SELECT

 delivery.delivery_cost,

 supplier.supplier_name,

 supplier.supplier_state

FROM delivery

INNER JOIN supplier

 ON delivery.supplier_code = supplier.supplier_code

 AND delivery.order_date BETWEEN supplier.start_date AND supplier.end_date

Some cautions:

• Referential integrity by DBMS is not possible since there is not a unique to create the rela-
tionship.

• If relationship is made with surrogate to solve problem above then one ends with entity
tied to a specific time slice.

• If the join query is not written correctly, it may return duplicate rows and/or give incorrect
answers.

• The date comparison might not perform well.

• Some Business Intelligence tools do not handle generating complex joins well.

• The ETL processes needed to create the dimension table needs to be carefully designed
to ensure that there are no overlaps in the time periods for each distinct item of reference
data.

• Many of problems above can be solved using the mixed diagram of an scd model below.

Combining Types

Different SCD Types can be applied to different columns of a table. For example, we can apply
Type 1 to the Supplier_Name column and Type 2 to the Supplier_State column of the same table.

________________________ WORLD TECHNOLOGIES ________________________

154 Business Intelligence and Analytics

Scd model

Data Vault Modeling

Data vault modeling is a database modeling method that is designed to provide long-term histor-
ical storage of data coming in from multiple operational systems. It is also a method of looking at
historical data that deals with issues such as auditing, tracing of data, loading speed and resilience
to change as well as emphasizing the need to trace where all the data in the database came from.
This means that every row in a data vault must be accompanied by record source and load date
attributes, enabling an auditor to trace values back to the source.

Data vault modeling makes no distinction between good and bad data (“bad” meaning not con-
forming to business rules). This is summarized in the statement that a data vault stores “a single
version of the facts” (also expressed by Dan Linstedt as “all the data, all of the time”) as opposed to
the practice in other data warehouse methods of storing “a single version of the truth” where data
that does not conform to the definitions is removed or “cleansed”.

The modeling method is designed to be resilient to change in the business environment where the
data being stored is coming from, by explicitly separating structural information from descriptive
attributes. Data vault is designed to enable parallel loading as much as possible, so that very large
implementations can scale out without the need for major redesign.

History and Philosophy

In data warehouse modeling there are two well-known competing options for modeling the layer
where the data are stored. Either you model according to Ralph Kimball, with conformed dimen-
sions and an enterprise data bus, or you model according to Bill Inmon with the database nor-
malized. Both techniques have issues when dealing with changes in the systems feeding the data
warehouse. For conformed dimensions you also have to cleanse data (to conform it) and this is
undesirable in a number of cases since this inevitably will lose information. Data vault is designed
to avoid or minimize the impact of those issues, by moving them to areas of the data warehouse

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 155

that are outside the historical storage area (cleansing is done in the data marts) and by separating
the structural items (business keys and the associations between the business keys) from the de-
scriptive attributes.

Dan Linstedt, the creator of the method, describes the resulting database as follows:

The Data Vault Model is a detail oriented, historical tracking and uniquely linked set of normalized
tables that support one or more functional areas of business. It is a hybrid approach encompassing
the best of breed between 3rd normal form (3NF) and star schema. The design is flexible, scalable,
consistent and adaptable to the needs of the enterprise

Data vault’s philosophy is that all data are relevant data, even if it is not in line with established
definitions and business rules. If data are not conforming to these definitions and rules then that
is a problem for the business, not the data warehouse. The determination of data being “wrong” is
an interpretation of the data that stems from a particular point of view that may not be valid for
everyone, or at every point in time. Therefore the data vault must capture all data and only when
reporting or extracting data from the data vault is the data being interpreted.

Another issue to which data vault is a response is that more and more there is a need for complete
auditability and traceability of all the data in the data warehouse. Due to Sarbanes-Oxley require-
ments in the USA and similar measures in Europe this is a relevant topic for many business intelli-
gence implementations, hence the focus of any data vault implementation is complete traceability
and auditability of all information.

Data Vault 2.0 is the new specification, it is an open standard. The new specification contains
components which define the implementation best practices, the methodology (SEI/CMMI, Six
Sigma, SDLC, etc..), the architecture, and the model. Data Vault 2.0 has a focus on including new
components such as Big Data, NoSQL - and also focuses on performance of the existing model. The
old specification (documented here for the most part) is highly focused on data vault modeling. It
is documented in the book: Building a Scalable Data Warehouse with Data Vault 2.0.

It is necessary to evolve the specification to include the new components, along with the best prac-
tices in order to keep the EDW and BI systems current with the needs and desires of today’s busi-
nesses.

History

Data vault modeling was originally conceived by Dan Linstedt in 1990 and was released in 2000 as
a public domain modeling method. In a series of five articles on The Data Administration Newslet-
ter the basic rules of the Data Vault method are expanded and explained. These contain a general
overview, an overview of the components, a discussion about end dates and joins, link tables, and
an article on loading practices.

An alternative (and seldom used) name for the method is “Common Foundational Integration
Modelling Architecture.”

Data Vault 2.0 has arrived on the scene as of 2013 and brings to the table Big Data, NoSQL,
unstructured, semi-structured seamless integration, along with methodology, architecture, and
implementation best practices.

________________________ WORLD TECHNOLOGIES ________________________

156 Business Intelligence and Analytics

Alternative Interpretations

According to Dan Linstedt, the Data Model is inspired by (or patterned off) a simplistic view of
neurons, dendrites, and synapses – where neurons are associated with Hubs and Hub Satellites,
Links are dendrites (vectors of information), and other Links are synapses (vectors in the oppo-
site direction). By using a data mining set of algorithms, links can be scored with confidence and
strength ratings. They can be created and dropped on the fly in accordance with learning about
relationships that currently don’t exist. The model can be automatically morphed, adapted, and
adjusted as it is used and fed new structures.

Another view is that a data vault model provides an ontology of the Enterprise in the sense that
it describes the terms in the domain of the enterprise (Hubs) and the relationships among them
(Links), adding descriptive attributes (Satellites) where necessary.

Another way to think of a data vault model is as a graph model. The data vault model actually
provides a “graph based” model with hubs and relationships in a relational database world. In this
manner, the developer can use SQL to get at graph based relationships with sub-second responses.

Basic Notions

Data vault attempts to solve the problem of dealing with change in the environment by separating
the business keys (that do not mutate as often, because they uniquely identify a business entity)
and the associations between those business keys, from the descriptive attributes of those keys.

The business keys and their associations are structural attributes, forming the skeleton of the data
model. The data vault method has as one of its main axioms that real business keys only change
when the business changes and are therefore the most stable elements from which to derive the
structure of a historical database. If you use these keys as the backbone of a data warehouse, you
can organize the rest of the data around them. This means that choosing the correct keys for the
hubs is of prime importance for the stability of your model. The keys are stored in tables with a few
constraints on the structure. These key-tables are called hubs.

Hubs

Hubs contain a list of unique business keys with low propensity to change. Hubs also contain a
surrogate key for each Hub item and metadata describing the origin of the business key. The de-
scriptive attributes for the information on the Hub (such as the description for the key, possibly in
multiple languages) are stored in structures called Satellite tables which will be discussed below.

The Hub contains at least the following fields:

• a surrogate key, used to connect the other structures to this table.

• a business key, the driver for this hub. The business key can consist of multiple fields.

• the record source, which can be used to see what system loaded each business key first.

optionally, you can also have metadata fields with information about manual updates (user/time)
and the extraction date.

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 157

A hub is not allowed to contain multiple business keys, except when two systems deliver the same
business key but with collisions that have different meanings.

Hubs should normally have at least one satellite.

Hub Example

This is an example for a hub-table containing cars, called “Car” (H_CAR). The driving key is vehi-
cle identification number.

Fieldname Description Mandatory? Comment

H_CAR_ID Sequence ID and surrogate key for the hub No
Recommended but
optional

VEHICLE_ID_NR
The business key that drives this hub. Can be more
than one field for a composite business key

Yes

H_RSRC The recordsource of this key when first loaded Yes

LOAD_AUDIT_ID
An ID into a table with audit information, such as
load time, duration of load, number of lines, etc.

No

Links

Associations or transactions between business keys (relating for instance the hubs for customer
and product with each other through the purchase transaction) are modeled using link tables.
These tables are basically many-to-many join tables, with some metadata.

Links can link to other links, to deal with changes in granularity (for instance, adding a new key
to a database table would change the grain of the database table). For instance, if you have an
association between customer and address, you could add a reference to a link between the hubs
for product and transport company. This could be a link called “Delivery”. Referencing a link in
another link is considered a bad practice, because it introduces dependencies between links that
make parallel loading more difficult. Since a link to another link is the same as a new link with the
hubs from the other link, in these cases creating the links without referencing other links is the
preferred solution.

Links sometimes link hubs to information that is not by itself enough to construct a hub. This oc-
curs when one of the business keys associated by the link is not a real business key. As an example,
take an order form with “order number” as key, and order lines that are keyed with a semi-random
number to make them unique. Let’s say, “unique number”. The latter key is not a real business key,
so it is no hub. However, we do need to use it in order to guarantee the correct granularity for the
link. In this case, we do not use a hub with surrogate key, but add the business key “unique num-
ber” itself to the link. This is done only when there is no possibility of ever using the business key
for another link or as key for attributes in a satellite. This construct has been called a ‘peg-legged
link’ by Dan Linstedt on his (now defunct) forum.

Links contain the surrogate keys for the hubs that are linked, their own surrogate key for the link
and metadata describing the origin of the association. The descriptive attributes for the informa-
tion on the association (such as the time, price or amount) are stored in structures called satellite
tables which are discussed below.

________________________ WORLD TECHNOLOGIES ________________________

158 Business Intelligence and Analytics

Link Example

This is an example for a link-table between two hubs for cars (H_CAR) and persons (H_PERSON).
The link is called “Driver” (L_DRIVER).

Fieldname Description Mandatory? Comment

L_DRIVER_ID Sequence ID and surrogate key for the Link No
Recommended but
optional

H_CAR_ID
surrogate key for the car hub, the first anchor of
the link

Yes

H_PERSON_ID
surrogate key for the person hub, the second
anchor of the link

Yes

L_RSRC
The recordsource of this association when first
loaded

Yes

LOAD_AUDIT_ID
An ID into a table with audit information, such as
load time, duration of load, number of lines, etc.

No

Satellites

The hubs and links form the structure of the model, but have no temporal attributes and hold no
descriptive attributes. These are stored in separate tables called satellites. These consist of meta-
data linking them to their parent hub or link, metadata describing the origin of the association and
attributes, as well as a timeline with start and end dates for the attribute. Where the hubs and links
provide the structure of the model, the satellites provide the “meat” of the model, the context for
the business processes that are captured in hubs and links. These attributes are stored both with
regards to the details of the matter as well as the timeline and can range from quite complex (all
of the fields describing a clients complete profile) to quite simple (a satellite on a link with only a
valid-indicator and a timeline).

Usually the attributes are grouped in satellites by source system. However, descriptive attributes
such as size, cost, speed, amount or color can change at different rates, so you can also split these
attributes up in different satellites based on their rate of change.

All the tables contain metadata, minimally describing at least the source system and the date on
which this entry became valid, giving a complete historical view of the data as it enters the data
warehouse.

Satellite Example

This is an example for a satellite on the drivers-link between the hubs for cars and persons, called
“Driver insurance” (S_DRIVER_INSURANCE). This satellite contains attributes that are specif-
ic to the insurance of the relationship between the car and the person driving it, for instance an
indicator whether this is the primary driver, the name of the insurance company for this car and
person (could also be a separate hub) and a summary of the number of accidents involving this
combination of vehicle and driver. Also included is a reference to a lookup- or reference table
called R_RISK_CATEGORY containing the codes for the risk category in which this relationship
is deemed to fall.

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 159

Fieldname Description Mandatory? Comment

S_DRIVER_INSURANCE_ID
Sequence ID and surrogate key
for the satellite on the link

No
Recommended but
optional

L_DRIVER_ID
(surrogate) primary key for the
driver link, the parent of the
satellite

Yes

S_SEQ_NR

Ordering or sequence number,
to enforce uniqueness if there
are several valid satellites for one
parent key

No(**)

This can happen if, for
instance, you have a
hub COURSE and the
name of the course is an
attribute but in several
different languages.

S_LDTS

Load Date (startdate) for the
validity of this combination of
attribute values for parent key
L_DRIVER_ID

Yes

S_LEDTS

Load End Date (enddate) for the
validity of this combination of
attribute values for parent key
L_DRIVER_ID

No

IND_PRIMARY_DRIVER
Indicator whether the driver is
the primary driver for this car

No (*)

INSURANCE_COMPANY
The name of the insurance
company for this vehicle and this
driver

No (*)

NR_OF_ACCIDENTS
The number of accidents by this
driver in this vehicle

No (*)

R_RISK_CATEGORY_CD
The risk category for the driver.
This is a reference to R_RISK_
CATEGORY

No (*)

S_RSRC
The recordsource of the
information in this satellite when
first loaded

Yes

LOAD_AUDIT_ID

An ID into a table with audit
information, such as load time,
duration of load, number of
lines, etc.

No

(*) at least one attribute is mandatory. (**) sequence number becomes mandatory if it is needed to
enforce uniqueness for multiple valid satellites on the same hub or link.

Reference Tables

Reference tables are a normal part of a healthy data vault model. They are there to prevent redun-
dant storage of simple reference data that is referenced a lot. More formally, Dan Linstedt defines
reference data as follows:

Any information deemed necessary to resolve descriptions from codes, or to translate keys in to
(sic) a consistent manner. Many of these fields are “descriptive” in nature and describe a specif-
ic state of the other more important information. As such, reference data lives in separate tables
from the raw Data Vault tables.

________________________ WORLD TECHNOLOGIES ________________________

160 Business Intelligence and Analytics

Reference tables are referenced from Satellites, but never bound with physical foreign keys. There
is no prescribed structure for reference tables: use what works best in your specific case, ranging
from simple lookup tables to small data vaults or even stars. They can be historical or have no
history, but it is recommended that you stick to the natural keys and not create surrogate keys in
that case. Normally, data vaults have a lot of reference tables, just like any other Data Warehouse.

Reference Example

This is an example of a reference table with risk categories for drivers of vehicles. It can be refer-
enced from any satellite in the data vault. For now we reference it from satellite S_DRIVER_IN-
SURANCE. The reference table is R_RISK_CATEGORY.

Fieldname Description Mandatory?

R_RISK_CATEGORY_CD The code for the risk category Yes

RISK_CATEGORY_DESC A description of the risk category No (*)

(*) at least one attribute is mandatory.

Loading Practices

The ETL for updating a data vault model is fairly straightforward. First you have to load all the
hubs, creating surrogate IDs for any new business keys. Having done that, you can now resolve
all business keys to surrogate ID’s if you query the hub. The second step is to resolve the links
between hubs and create surrogate IDs for any new associations. At the same time, you can also
create all satellites that are attached to hubs, since you can resolve the key to a surrogate ID.
Once you have created all the new links with their surrogate keys, you can add the satellites to
all the links.

Since the hubs are not joined to each other except through links, you can load all the hubs in paral-
lel. Since links are not attached directly to each other, you can load all the links in parallel as well.
Since satellites can be attached only to hubs and links, you can also load these in parallel.

The ETL is quite straightforward and lends itself to easy automation or templating. Problems oc-
cur only with links relating to other links, because resolving the business keys in the link only leads
to another link that has to be resolved as well. Due to the equivalence of this situation with a link
to multiple hubs, this difficulty can be avoided by remodeling such cases and this is in fact the
recommended practice.

Data are never deleted from the data vault, unless you have a technical error while loading data.

Data Vault and Dimensional Modelling

The data vault modelled layer is normally used to store data. It is not optimized for query per-
formance, nor is it easy to query by the well-known query-tools such as Cognos, SAP Business
Objects, Pentaho et al. Since these end-user computing tools expect or prefer their data to be con-
tained in a dimensional model, a conversion is usually necessary.

For this purpose, the hubs and related satellites on those hubs can be considered as dimensions

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 161

and the links and related satellites on those links can be viewed as fact tables in a dimensional
model. This enables you to quickly prototype a dimensional model out of a data vault model using
views. For performance reasons the dimensional model will usually be implemented in relational
tables, after approval.

Note that while it is relatively straightforward to move data from a data vault model to a (cleansed)
dimensional model, the reverse is not as easy.

Data Vault Methodology

The data vault methodology is based on SEI/CMMI Level 5 best practices. It includes multiple
components of CMMI Level 5, and combines them with best practices from Six Sigma, TQM, and
SDLC. Particularly, it is focused on Scott Ambler’s agile methodology for build out and deploy-
ment. Data vault projects have a short, scope-controlled release cycle and should consist of a pro-
duction release every 2 to 3 weeks.

Teams using the data vault methodology will automatically adopt to the repeatable, consistent,
and measurable projects that are expected at CMMI Level 5. Data that flow through the EDW data
vault system will begin to follow the TQM (total quality management) life-cycle that has long been
missing from BI (business intelligence) projects.

Extract, Transform, Load

ETL Architecture Pattern

________________________ WORLD TECHNOLOGIES ________________________

162 Business Intelligence and Analytics

In computing, Extract, Transform, Load (ETL) refers to a process in database usage and especially
in data warehousing. Data extraction is where data is extracted from homogeneous or heteroge-
neous data sources; data transformation where the data is transformed for storing in the proper
format or structure for the purposes of querying and analysis; data loading where the data is load-
ed into the final target database, more specifically, an operational data store, data mart, or data
warehouse.

Since the data extraction takes time, it is common to execute the three phases in parallel. While the
data is being extracted, another transformation process executes. It processes the already received
data and prepares it for loading. As soon as there is some data ready to be loaded into the target,
the data loading kicks off without waiting for the completion of the previous phases.

ETL systems commonly integrate data from multiple applications (systems), typically developed
and supported by different vendors or hosted on separate computer hardware. The disparate sys-
tems containing the original data are frequently managed and operated by different employees.
For example, a cost accounting system may combine data from payroll, sales, and purchasing.

Extract

The first part of an ETL process involves extracting the data from the source system(s). In many
cases this represents the most important aspect of ETL, since extracting data correctly sets the
stage for the success of subsequent processes. Most data-warehousing projects combine data from
different source systems. Each separate system may also use a different data organization and/or
format. Common data-source formats include relational databases, XML and flat files, but may
also include non-relational database structures such as Information Management System (IMS)
or other data structures such as Virtual Storage Access Method (VSAM) or Indexed Sequential
Access Method (ISAM), or even formats fetched from outside sources by means such as web spi-
dering or screen-scraping. The streaming of the extracted data source and loading on-the-fly to
the destination database is another way of performing ETL when no intermediate data storage is
required. In general, the extraction phase aims to convert the data into a single format appropriate
for transformation processing.

An intrinsic part of the extraction involves data validation to confirm whether the data pulled from
the sources has the correct/expected values in a given domain (such as a pattern/default or list of
values). If the data fails the validation rules it is rejected entirely or in part. The rejected data is ide-
ally reported back to the source system for further analysis to identify and to rectify the incorrect
records. In some cases the extraction process itself may have to do a data-validation rule in order
to accept the data and flow to the next phase.

Transform

In the data transformation stage, a series of rules or functions are applied to the extracted data in
order to prepare it for loading into the end target. Some data does not require any transformation
at all; such data is known as “direct move” or “pass through” data.

An important function of transformation is the cleaning of data, which aims to pass only “proper”
data to the target. The challenge when different systems interact is in the relevant systems’ inter-

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 163

facing and communicating. Character sets that may be available in one system may not be so in
others.

In other cases, one or more of the following transformation types may be required to meet the
business and technical needs of the server or data warehouse:

• Selecting only certain columns to load: (or selecting null columns not to load). For exam-
ple, if the source data has three columns (aka “attributes”), roll_no, age, and salary, then
the selection may take only roll_no and salary. Or, the selection mechanism may ignore all
those records where salary is not present (salary = null).

• Translating coded values: (e.g., if the source system codes male as “1” and female as “2”,
but the warehouse codes male as “M” and female as “F”)

• Encoding free-form values: (e.g., mapping “Male” to “M”)

• Deriving a new calculated value: (e.g., sale_amount = qty * unit_price)

• Sorting or ordering the data based on a list of columns to improve search performance

• Joining data from multiple sources (e.g., lookup, merge) and deduplicating the data

• Aggregating (for example, rollup — summarizing multiple rows of data — total sales for
each store, and for each region, etc.)

• Generating surrogate-key values

• Transposing or pivoting (turning multiple columns into multiple rows or vice versa)

• Splitting a column into multiple columns (e.g., converting a comma-separated list, speci-
fied as a string in one column, into individual values in different columns)

• Disaggregating repeating columns

• Looking up and validating the relevant data from tables or referential files

• Applying any form of data validation; failed validation may result in a full rejection of the
data, partial rejection, or no rejection at all, and thus none, some, or all of the data is hand-
ed over to the next step depending on the rule design and exception handling; many of the
above transformations may result in exceptions, e.g., when a code translation parses an
unknown code in the extracted data

Load

The load phase loads the data into the end target that may be a simple delimited flat file or a data
warehouse. Depending on the requirements of the organization, this process varies widely. Some
data warehouses may overwrite existing information with cumulative information; updating ex-
tracted data is frequently done on a daily, weekly, or monthly basis. Other data warehouses (or
even other parts of the same data warehouse) may add new data in a historical form at regular
intervals—for example, hourly. To understand this, consider a data warehouse that is required to
maintain sales records of the last year. This data warehouse overwrites any data older than a year
with newer data. However, the entry of data for any one year window is made in a historical man-

________________________ WORLD TECHNOLOGIES ________________________

164 Business Intelligence and Analytics

ner. The timing and scope to replace or append are strategic design choices dependent on the time
available and the business needs. More complex systems can maintain a history and audit trail of
all changes to the data loaded in the data warehouse.

As the load phase interacts with a database, the constraints defined in the database schema — as well as
in triggers activated upon data load — apply (for example, uniqueness, referential integrity, mandatory
fields), which also contribute to the overall data quality performance of the ETL process.

• For example, a financial institution might have information on a customer in several de-
partments and each department might have that customer’s information listed in a dif-
ferent way. The membership department might list the customer by name, whereas the
accounting department might list the customer by number. ETL can bundle all of these
data elements and consolidate them into a uniform presentation, such as for storing in a
database or data warehouse.

• Another way that companies use ETL is to move information to another application per-
manently. For instance, the new application might use another database vendor and most
likely a very different database schema. ETL can be used to transform the data into a for-
mat suitable for the new application to use.

• An example would be an Expense and Cost Recovery System (ECRS) such as used by accoun-
tancies, consultancies, and legal firms. The data usually ends up in the time and billing system,
although some businesses may also utilize the raw data for employee productivity reports to
Human Resources (personnel dept.) or equipment usage reports to Facilities Management.

Real-life ETL Cycle

The typical real-life ETL cycle consists of the following execution steps:

1. Cycle initiation

2. Build reference data

3. Extract (from sources)

4. Validate

5. Transform (clean, apply business rules, check for data integrity, create aggregates or dis-
aggregates)

6. Stage (load into staging tables, if used)

7. Audit reports (for example, on compliance with business rules. Also, in case of failure,
helps to diagnose/repair)

8. Publish (to target tables)

9. Archive

Challenges

ETL processes can involve considerable complexity, and significant operational problems can oc-

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 165

cur with improperly designed ETL systems.

The range of data values or data quality in an operational system may exceed the expectations of
designers at the time validation and transformation rules are specified. Data profiling of a source
during data analysis can identify the data conditions that must be managed by transform rules
specifications, leading to an amendment of validation rules explicitly and implicitly implemented
in the ETL process.

Data warehouses are typically assembled from a variety of data sources with different formats and
purposes. As such, ETL is a key process to bring all the data together in a standard, homogeneous
environment.

Design analysts should establish the scalability of an ETL system across the lifetime of its usage---in-
cluding understanding the volumes of data that must be processed within service level agreements. The
time available to extract from source systems may change, which may mean the same amount of data
may have to be processed in less time. Some ETL systems have to scale to process terabytes of data to
update data warehouses with tens of terabytes of data. Increasing volumes of data may require designs
that can scale from daily batch to multiple-day micro batch to integration with message queues or re-
al-time change-data capture for continuous transformation and update.

Performance

ETL vendors benchmark their record-systems at multiple TB (terabytes) per hour (or ~1 GB per
second) using powerful servers with multiple CPUs, multiple hard drives, multiple gigabit-net-
work connections, and lots of memory. The fastest ETL record is currently held by Syncsort, Ver-
tica, and HP at 5.4TB in under an hour, which is more than twice as fast as the earlier record held
by Microsoft and Unisys.

In real life, the slowest part of an ETL process usually occurs in the database load phase. Databas-
es may perform slowly because they have to take care of concurrency, integrity maintenance, and
indices. Thus, for better performance, it may make sense to employ:

• Direct Path Extract method or bulk unload whenever is possible (instead of querying the
database) to reduce the load on source system while getting high speed extract

• Most of the transformation processing outside of the database

• Bulk load operations whenever possible

Still, even using bulk operations, database access is usually the bottleneck in the ETL process.
Some common methods used to increase performance are:

• Partition tables (and indices): try to keep partitions similar in size (watch for null values
that can skew the partitioning)

• Do all validation in the ETL layer before the load: disable integrity checking (disable con-
straint ...) in the target database tables during the load

• Disable triggers (disable trigger ...) in the target database tables during the load: simulate
their effect as a separate step

________________________ WORLD TECHNOLOGIES ________________________

166 Business Intelligence and Analytics

• Generate IDs in the ETL layer (not in the database)

• Drop the indices (on a table or partition) before the load - and recreate them after the load
(SQL: drop index ...; create index ...)

• Use parallel bulk load when possible — works well when the table is partitioned or there are
no indices (Note: attempt to do parallel loads into the same table (partition) usually causes
locks — if not on the data rows, then on indices)

• If a requirement exists to do insertions, updates, or deletions, find out which rows should
be processed in which way in the ETL layer, and then process these three operations in the
database separately; you often can do bulk load for inserts, but updates and deletes com-
monly go through an API (using SQL)

Whether to do certain operations in the database or outside may involve a trade-off. For example,
removing duplicates using distinct may be slow in the database; thus, it makes sense to do it out-
side. On the other side, if using distinct significantly (x100) decreases the number of rows to be
extracted, then it makes sense to remove duplications as early as possible in the database before
unloading data.

A common source of problems in ETL is a big number of dependencies among ETL jobs. For exam-
ple, job “B” cannot start while job “A” is not finished. One can usually achieve better performance
by visualizing all processes on a graph, and trying to reduce the graph making maximum use of
parallelism, and making “chains” of consecutive processing as short as possible. Again, partition-
ing of big tables and their indices can really help.

Another common issue occurs when the data are spread among several databases, and process-
ing is done in those databases sequentially. Sometimes database replication may be involved as a
method of copying data between databases - it can significantly slow down the whole process. The
common solution is to reduce the processing graph to only three layers:

• Sources

• Central ETL layer

• Targets

This approach allows processing to take maximum advantage of parallelism. For example, if you
need to load data into two databases, you can run the loads in parallel (instead of loading into the
first - and then replicating into the second).

Sometimes processing must take place sequentially. For example, dimensional (reference) data
are needed before one can get and validate the rows for main “fact” tables.

Parallel Processing

A recent development in ETL software is the implementation of parallel processing. It has enabled
a number of methods to improve overall performance of ETL when dealing with large volumes of
data.

ETL applications implement three main types of parallelism:

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 167

• Data: By splitting a single sequential file into smaller data files to provide parallel access

• Pipeline: allowing the simultaneous running of several components on the same data
stream, e.g. looking up a value on record 1 at the same time as adding two fields on record 2

• Component: The simultaneous running of multiple processes on different data streams in
the same job, e.g. sorting one input file while removing duplicates on another file

All three types of parallelism usually operate combined in a single job.

An additional difficulty comes with making sure that the data being uploaded is relatively consis-
tent. Because multiple source databases may have different update cycles (some may be updated
every few minutes, while others may take days or weeks), an ETL system may be required to hold
back certain data until all sources are synchronized. Likewise, where a warehouse may have to be
reconciled to the contents in a source system or with the general ledger, establishing synchroniza-
tion and reconciliation points becomes necessary.

Rerunnability, Recoverability

Data warehousing procedures usually subdivide a big ETL process into smaller pieces running
sequentially or in parallel. To keep track of data flows, it makes sense to tag each data row with
“row_id”, and tag each piece of the process with “run_id”. In case of a failure, having these IDs
help to roll back and rerun the failed piece.

Best practice also calls for checkpoints, which are states when certain phases of the process are
completed. Once at a checkpoint, it is a good idea to write everything to disk, clean out some tem-
porary files, log the state, and so on.

Virtual ETL

As of 2010 data virtualization had begun to advance ETL processing. The application of data vir-
tualization to ETL allowed solving the most common ETL tasks of data migration and application
integration for multiple dispersed data sources. Virtual ETL operates with the abstracted repre-
sentation of the objects or entities gathered from the variety of relational, semi-structured, and
unstructured data sources. ETL tools can leverage object-oriented modeling and work with enti-
ties’ representations persistently stored in a centrally located hub-and-spoke architecture. Such a
collection that contains representations of the entities or objects gathered from the data sources
for ETL processing is called a metadata repository and it can reside in memory or be made per-
sistent. By using a persistent metadata repository, ETL tools can transition from one-time projects
to persistent middleware, performing data harmonization and data profiling consistently and in
near-real time.

Dealing with Keys

Keys play an important part in all relational databases, as they tie everything together. A primary
key is a column that identifies a given entity, whereas a foreign key is a column in another table
that refers to a primary key. Keys can comprise several columns, in which case they are composite
keys. In many cases the primary key is an auto-generated integer that has no meaning for the busi-

________________________ WORLD TECHNOLOGIES ________________________

168 Business Intelligence and Analytics

ness entity being represented, but solely exists for the purpose of the relational database - com-
monly referred to as a surrogate key.

As there is usually more than one data source getting loaded into the warehouse, the keys are an
important concern to be addressed. For example: customers might be represented in several data
sources, with their Social Security Number as the primary key in one source, their phone number
in another, and a surrogate in the third. Yet a data warehouse may require the consolidation of all
the customer information into one dimension table.

A recommended way to deal with the concern involves adding a warehouse surrogate key, which is
used as a foreign key from the fact table.

Usually updates occur to a dimension’s source data, which obviously must be reflected in the data
warehouse.

If the primary key of the source data is required for reporting, the dimension already contains that
piece of information for each row. If the source data uses a surrogate key, the warehouse must keep
track of it even though it is never used in queries or reports; it is done by creating a lookup table
that contains the warehouse surrogate key and the originating key. This way, the dimension is not
polluted with surrogates from various source systems, while the ability to update is preserved.

The lookup table is used in different ways depending on the nature of the source data. There are 5
types to consider; three are included here:

Type 1

The dimension row is simply updated to match the current state of the source system; the
warehouse does not capture history; the lookup table is used to identify the dimension row
to update or overwrite

Type 2

A new dimension row is added with the new state of the source system; a new surrogate key
is assigned; source key is no longer unique in the lookup table

Fully logged

A new dimension row is added with the new state of the source system, while the previous
dimension row is updated to reflect it is no longer active and time of deactivation.

Tools

By using an established ETL framework, one may increase one’s chances of ending up with better
connectivity and scalability. A good ETL tool must be able to communicate with the many different
relational databases and read the various file formats used throughout an organization. ETL tools
have started to migrate into Enterprise Application Integration, or even Enterprise Service Bus,
systems that now cover much more than just the extraction, transformation, and loading of data.
Many ETL vendors now have data profiling, data quality, and metadata capabilities. A common
use case for ETL tools include converting CSV files to formats readable by relational databases. A
typical translation of millions of records is facilitated by ETL tools that enable users to input csv-

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 169

like data feeds/files and import it into a database with as little code as possible.

ETL tools are typically used by a broad range of professionals - from students in computer science
looking to quickly import large data sets to database architects in charge of company account man-
agement, ETL tools have become a convenient tool that can be relied on to get maximum perfor-
mance. ETL tools in most cases contain a GUI that helps users conveniently transform data, using
a visual data mapper, as opposed to writing large programs to parse files and modify data types.

While ETL Tools have traditionally been for developers and I.T. staff, the new trend is to provide
these capabilities to business users so they can themselves create connections and data integra-
tions when needed, rather than going to the I.T. staff. Gartner refers to these non-technical users
as Citizen Integrators.

Star Schema

In computing, the star schema is the simplest style of data mart schema and is the approach most
widely used to develop data warehouses and dimensional data marts. The star schema consists of
one or more fact tables referencing any number of dimension tables. The star schema is an import-
ant special case of the snowflake schema, and is more effective for handling simpler queries.

The star schema gets its name from the physical model’s resemblance to a star shape with a fact
table at its center and the dimension tables surrounding it representing the star’s points.

Model

The star schema separates business process data into facts, which hold the measurable, quantita-
tive data about a business, and dimensions which are descriptive attributes related to fact data.
Examples of fact data include sales price, sale quantity, and time, distance, speed, and weight
measurements. Related dimension attribute examples include product models, product colors,
product sizes, geographic locations, and salesperson names.

A star schema that has many dimensions is sometimes called a centipede schema. Having dimen-
sions of only a few attributes, while simpler to maintain, results in queries with many table joins
and makes the star schema less easy to use.

Fact Tables

Fact tables record measurements or metrics for a specific event. Fact tables generally consist of
numeric values, and foreign keys to dimensional data where descriptive information is kept. Fact
tables are designed to a low level of uniform detail (referred to as “granularity” or “grain”), mean-
ing facts can record events at a very atomic level. This can result in the accumulation of a large
number of records in a fact table over time. Fact tables are defined as one of three types:

• Transaction fact tables record facts about a specific event (e.g., sales events)

• Snapshot fact tables record facts at a given point in time (e.g., account details at month
end)

________________________ WORLD TECHNOLOGIES ________________________

170 Business Intelligence and Analytics

• Accumulating snapshot tables record aggregate facts at a given point in time (e.g., total
month-to-date sales for a product)

Fact tables are generally assigned a surrogate key to ensure each row can be uniquely identified.
This key is a simple primary key.

Dimension Tables

Dimension tables usually have a relatively small number of records compared to fact tables, but
each record may have a very large number of attributes to describe the fact data. Dimensions can
define a wide variety of characteristics, but some of the most common attributes defined by dimen-
sion tables include:

• Time dimension tables describe time at the lowest level of time granularity for which events
are recorded in the star schema

• Geography dimension tables describe location data, such as country, state, or city

• Product dimension tables describe products

• Employee dimension tables describe employees, such as sales people

• Range dimension tables describe ranges of time, dollar values, or other measurable quan-
tities to simplify reporting

Dimension tables are generally assigned a surrogate primary key, usually a single-column integer
data type, mapped to the combination of dimension attributes that form the natural key.

Benefits

Star schemas are denormalized, meaning the normal rules of normalization applied to transac-
tional relational databases are relaxed during star schema design and implementation. The bene-
fits of star schema denormalization are:

• Simpler queries - star schema join logic is generally simpler than the join logic required to
retrieve data from a highly normalized transactional schema.

• Simplified business reporting logic - when compared to highly normalized schemas, the
star schema simplifies common business reporting logic, such as period-over-period and
as-of reporting.

• Query performance gains - star schemas can provide performance enhancements for
read-only reporting applications when compared to highly normalized schemas.

• Fast aggregations - the simpler queries against a star schema can result in improved per-
formance for aggregation operations.

• Feeding cubes - star schemas are used by all OLAP systems to build proprietary OLAP
cubes efficiently; in fact, most major OLAP systems provide a ROLAP mode of operation
which can use a star schema directly as a source without building a proprietary cube struc-
ture.

________________________ WORLD TECHNOLOGIES ________________________

Understanding Data Warehousing 171

Disadvantages

The main disadvantage of the star schema is that data integrity is not enforced as well as it is in a
highly normalized database. One-off inserts and updates can result in data anomalies which nor-
malized schemas are designed to avoid. Generally speaking, star schemas are loaded in a highly
controlled fashion via batch processing or near-real time “trickle feeds”, to compensate for the lack
of protection afforded by normalization.

Star schema is also not as flexible in terms of analytical needs as a normalized data model. Normal-
ized models allow any kind of analytical queries to be executed as long as they follow the business
logic defined in the model. Star schemas tend to be more purpose-built for a particular view of the
data, thus not really allowing more complex analytics. Star schemas don’t support many-to-many
relationships between business entities - at least not very naturally. Typically these relationships
are simplified in star schema to conform to the simple dimensional model.

Example

Star schema used by example query.

Consider a database of sales, perhaps from a store chain, classified by date, store and product. The
image of the schema to the right is a star schema version of the sample schema provided in the
snowflake schema article.

Fact_Sales is the fact table and there are three dimension tables Dim_Date, Dim_Store and Dim_
Product.

Each dimension table has a primary key on its Id column, relating to one of the columns (viewed
as rows in the example schema) of the Fact_Sales table’s three-column (compound) primary key
(Date_Id, Store_Id, Product_Id). The non-primary key Units_Sold column of the fact table in this
example represents a measure or metric that can be used in calculations and analysis. The non-pri-
mary key columns of the dimension tables represent additional attributes of the dimensions (such
as the Year of the Dim_Date dimension).

For example, the following query answers how many TV sets have been sold, for each brand and
country, in 1997:

SELECT

 P.Brand,

________________________ WORLD TECHNOLOGIES ________________________

172 Business Intelligence and Analytics

 S.Country AS Countries,

 SUM(F.Units_Sold)

FROM Fact_Sales F

INNER JOIN Dim_Date D ON (F.Date_Id = D.Id)

INNER JOIN Dim_Store S ON (F.Store_Id = S.Id)

INNER JOIN Dim_Product P ON (F.Product_Id = P.Id)

WHERE D.Year = 1997 AND P.Product_Category = ‘tv’

GROUP BY

 P.Brand,

 S.Country

References

• Ralph Kimball, Margy Ross, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, Sec-
ond Edition, Wiley Computer Publishing, 2002. ISBN 0471-20024-7.

• Ralph Kimball, The Data Warehouse Toolkit, Second Edition, Wiley Publishing, Inc., 2008. ISBN 978-0-470-
14977-5, Pages 253-256

• Thomas C. Hammergren; Alan R. Simon (February 2009). Data Warehousing for Dummies, 2nd edition. John
Wiley & Sons. ISBN 978-0-470-40747-9.

• “Information Theory & Business Intelligence Strategy - Small Worlds Data Transformation Measure - MIKE2.0,
the open source methodology for Information Development”. Mike2.openmethodology.org. Retrieved 2013-
06-14.

• Linstedt, Dan. “Data Vault Series 1 – Data Vault Overview”. Data Vault Series. The Data Administration News-
letter. Retrieved 12 September 2011.

________________________ WORLD TECHNOLOGIES ________________________

	Chapter 4 Understanding Data Warehousing

